Cátedra bp de Medio Ambiente Industrial
  • Inicio
  • Sobre nosotros
  • Investigación
  • Formación y divulgación
  • Actualidad
  • Contacto
  • Menú

El INAM de la UJI y la Universidad de Nottingham desarrollan una metodología con potencial para transformar CO2 en productos químicos y para el almacenamiento de hidrógeno

Biocombustibles, Cambio Climático, Energía
UJI

Desde la firma del protocolo de Kioto en 1997, los países más desarrollados trabajan en diferentes acciones para conseguir una reducción efectiva de la emisión de gases de efecto invernadero. El gobierno español aprobó en noviembre de 2020 una hoja de ruta para descarbonizar la economía española y llegar, en 2050, a ser neutrales en carbono, es decir, obtener un balance cero de emisiones, según los compromisos adquiridos durante la Cumbre del Clima de 2015, y con la firma del Acuerdo de París. Para conseguir este objetivo es fundamental reducir el consumo de combustibles fósiles para generar energía y como materia prima para producir materiales y productos químicos.

La revista Nature Communications ha publicado esta semana un artículo liderado por el investigador del programa CIDEGENT Víctor Sans Sangorrín, miembro del Instituto Universitario de Materiales Avanzados de la Universitat Jaume I, Andreas Weilhard y Stephen P. Argent de la University of Nottingham, en el que explican una metodología que permite la eficiente captura y transformación de CO2 en forma de ácido fórmico, que tiene valor como producto químico básico y que representa un método químico con potencial para usarlo como vector de almacenamiento de hidrógeno, generado a partir de energías renovables, con alta densidad de energía y de forma segura al ser un líquido no inflamable. El proceso además es fácilmente reversible, lo que posibilita la recuperación del hidrógeno.

La síntesis del ácido fórmico a nivel industrial requiere el uso de materias primas derivadas de fuentes fósiles no renovables. El uso de CO2 como fuente de carbono es muy interesante, pero también complejo, puesto que presenta características termodinámicas y cinéticas desfavorables. El equipo del INAM y Nottingham ha demostrado que los líquidos iónicos básicos pueden amortiguar eficazmente la reacción química, «porque desplazan el equilibrio termodinámico hacia el producto y evitan la formación de productos poco reactivos debido a un efecto tampón, mientras estabilizan las especies catalíticamente activas a baja presión parcial de H2 y CO2».

«La combinación de líquidos iónicos básicos multifuncionales y el diseño del catalizador permite la síntesis de ácido fórmico con una eficiencia catalítica muy alta», comenta Víctor Sans de la Jaume I. Y es que el diseño de los catalizadores juega un papel clave en el desarrollo de sistemas catalíticos eficientes. Por eso, el sistema catalítico presentado por la hidrogenación de CO2 en condiciones de amortiguamiento está diseñado para trabajar en valores de temperatura y presión moderados.

«Esto -comenta Sans- permite optimizar el rendimiento del catalizador al controlar las limitaciones termodinámicas impuestas por la reacción, equilibrar el rendimiento cinético y termodinámico y conseguir una alta eficiencia catalítica». Además, la robustez del catalizador permitirá desarrollar sistemas multicatalíticos para generar otros productos de interés como el metanol, formaldehído o etileno. «Los resultados obtenidos representan un salto importante hacia sistemas sostenibles para transformar el CO2 en productos químicos y combustibles», concluye el investigador del INAM.

Efficient carbon dioxide hydrogenation to formic acid with buffering ionic liquids. Andreas Weilhard (Facultad de Ingeniería de la University of Nottingham); Stephen P. Argent (Escuela de Química de la University of Nottingham) y Víctor Sans (Instituto Universitario de Materiales Avanzados (INAM) de la Universitat Jaume I y Facultad de Ingeniería de la University of Nottingham).

Fuente: Universitat Jaume I – UJI

18 enero, 2021/por Cátedra BP
Compartir esta entrada
  • Compartir en Facebook
  • Compartir en Twitter
  • Compartir en Google+
  • Compartir en Linkedin
  • Compartir por correo

Categorías

  • Biocombustibles
  • Cambio Climático
  • Cátedra BP
  • Ecodiseño y economía circular
  • Eficiencia energética
  • Emisiones
  • Energía
  • Gestión de residuos
  • Otros
  • Refino
  • Salud e higiene laboral
  • Sostenibilidad

Últimas noticias

  • La deuda del sistema eléctrico en España alcanzó los 14.294 millones de euros en 2020, un 13,9% menos que en 201925 febrero, 2021 - 11:55 am
  • ASEGRE organiza un webinar sobre el nuevo RD para la gestión de pilas, acumuladores y RAEE25 febrero, 2021 - 10:16 am
  • GVAEl Plan ‘Municipis en Xarxa’ impulsa las comunidades energéticas locales de gestión pública en la Comunitat Valenciana25 febrero, 2021 - 9:53 am
  • La CNMC aprueba la Circular de etiquetado de electricidad que informa a los consumidores sobre el origen y el impacto de las ofertas sobre el medio ambiente24 febrero, 2021 - 5:18 pm
  • h2-hidrógenoLa Asociación Española del Hidrógeno crece casi un 50% en el último año24 febrero, 2021 - 3:46 pm

cátedra bp logo

Universitat Jaume I . Edificio ITC

Av. Vicent Sos Baynat, s/n
12071 Castellón de la Plana, España
catedrabpmedioambiente@uji.es

  • Contacto
  • Próximos cursos
  • Política de privacidad
© Cátedra BP de Medio Ambiente Industrial
  • Twitter
  • Linkedin
  • Rss
2020 fue el año de las renovables en España con una cuota superior al 43%... La Comisión Europea aprueba un régimen de apoyo a las empresas de elevado...
Desplazarse hacia arriba

Esta página utiliza cookies. Si continúas navegando entendemos que das tu consentimiento

EntendidoSaber más